

On fractals, fractional splines and wavelets

Michael Unser
Biomedical Imaging Group
EPFL, Lausanne
Switzerland

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington
1. REPORT DATE 07 JAN 2005		2. REPORT TYPE N/A		3. DATES COVERED -	
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER				
On fractals, fraction	5b. GRANT NUMBER				
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Biomedical Imaging Group EPFL, Lausanne Switzerland				8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited			
	OTES 50, Wavelets and M nent contains color i		(WAMA) Works	hop held on 1	19-31 July 2004.,
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 48	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

FRACTALS AND PHYSIOLOGY

- Fractal characteristics:
 - Complex, patterned
 - Statistical self-similarity
 - Scale-invariant structure
 - Generated by simple iterative rules

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

- $1/\omega^{2H+d}$ spectral decay
- Growth processes, biofractals

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Cardiovascular system

- Heart
 - Arterial tree
 - Dendritic anatomy

Lung

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Fractal bones

Trabecular bone

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

> QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

CT of a vertebra

μCΤ

Mammograms

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

DDSM: University of Florida

(Digital Database for Screening Mammography)

(Arnéodo et al., 2001)

Brain as a biofractal

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

(Bullmore, 1994)

1mm

Courtesy R. Mueller ETHZ

OUTLINE

- Fractals in physiology
- Wavelets and fractals
 - Motivation for using wavelets
 - Fractal processing: order is the key
 - What about fractional differentiation
- Fractional splines
- Fractional wavelets
- Wavelets in medical imaging
 - Survey of applications
 - Analysis of functional images

Motivation for using wavelets

 Wavelets provide basis functions that are self-similar [Mallat, 1989]

$$\forall f(x) \in L_2, \quad f(x) = \sum_{i \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} \langle f, \tilde{\psi}_{i,k} \rangle \ \psi_{i,k}(x)$$

$$\psi_{i,k} = 2^{-i/2} \psi \left(\frac{x - 2^i k}{2^i} \right)$$

- Wavelets approximately decorrelate statistically self-similar processes [Flandrin, 1992; Wornell, 1993]
- Unlike Fourier exponentials, wavelets are jointly localized in space and frequency
- The basis functions themselves are fractals [Blu-Unser, 2002]

Wavelets are prime candidates for processing fractal-like signals and images

On the fractal nature of wavelets

Harmonic spline decomposition of wavelets

Theorem: Any valid compactly supported scaling function $\varphi(x)$ (or wavelet $\psi(x)$) can be expressed either as

- (1) a weighed sum of the integer shifts of a self-similar function (fractal);
- (2) a linear combination of harmonic splines with complex exponents.

[Blu-Unser, 2002]

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

D4 as a sum of harmonic splines

Sum of spline components

$$\varphi_N(x) = \sum_{n=-N/2}^{+N/2} \gamma_n s_n(x)$$

where

$$s_n(x) = \sum_{k \in Z^+} p_k(x - k)_+^{\frac{\log \lambda}{\log 2} + j\frac{2\pi n}{\log 2}}$$

QuickTime™ and a Video decompressor are needed to see this picture.

Fractal processing: order is the key!

Vanishing moments

Classical Nth order transform \Leftrightarrow analysis wavelet $\tilde{\psi}(x)$ has N vanishing moments

$$\int_{x \in R} x^n \tilde{\psi}(x) dx = 0, \quad n = 0, \dots, N - 1$$

 $\tilde{\psi}$ kills all polynomials of degree n < N

Multi-scale differentiation property

Property

An analysis wavelet of order N acts like a Nth order differentiator:

$$\hat{\tilde{\psi}}(\omega) = O(\omega^N)$$

Smoothing kernel: $\hat{\phi}(\omega) = \hat{\tilde{\psi}}^*(\omega)/(j\omega)^N$

What about fractional differentiation?

Fractional differentiation operator

$$\mathcal{J}f(x) \qquad \stackrel{\mathsf{F}}{\longleftrightarrow} \qquad (j\omega)^{\gamma} \hat{f}(\omega) \qquad \qquad \gamma \in R^{+}$$

Motivation: whitening of fBM-like processes

- QUESTION
 Are there wavelets that act like fractional differentiators?
- ANSWER Not within the context of standard wavelet theory where the order is constrained to be an *integer*, but ...

SPLINES

- Polynomial splines
- Fractional B-splines
- Properties
 - Fractional differentiation
 - Fractional order of approximation

Polynomial splines (Schoenberg, 1946)

Definition:

s(x) is cardinal polynomial spline of degree n iff

- Piecewise polynomial: s(x) is a polynomial of degree n in each interval [k, k+1);
- Higher-order continuity: $s(x), s^{(1)}(x), \dots, s^{(n-1)}(x)$ are continuous at the knots k.

B-spline representation

B-splines of degree n

$$\beta_+^n(x) = \underbrace{\beta_+^0 * \cdots * \beta_+^0}_{(n+1) \text{ times}}(x)$$

Explicit formula: $\beta_+^n(x) = \frac{\Delta_+^{n+1} x_+^n}{n!}$

Theorem [Schoenberg, 1946]

A cardinal spline of degree n has a stable, unique representation as a linear combination of shifted B-splines

$$s(x) = \sum_{k \in \mathbb{Z}} c(k) \beta_+^n (x - k)$$

Can we fractionalize splines?

Schoenberg's formula

$$\beta_{+}^{n}(x) = \frac{\Delta_{+}^{n+1} x_{+}^{n}}{n!}$$

$$\beta_+^{\alpha}(x) = \frac{\Delta_+^{\alpha+1} x_+^{\alpha}}{\Gamma(\alpha+1)}$$

Basic tools for fractionalization

Generalized factorials—Euler's Gamma function

$$n! = \Gamma(n+1) \qquad \Gamma(u) = \int_{0}^{+\infty} x^{u-1} e^{-x} dx$$

Generalized binomial

$$(1+z)^{\gamma} = \sum_{k=0}^{+\infty} {\gamma \choose k} z^k$$

Fractional derivative [Liouville, 1855]

$$\partial^s \leftarrow \xrightarrow{Fourier} (j\omega)^s$$

Fractional finite differences

$$\Delta_{+}^{s} \xleftarrow{Fourier} (1 - e^{-j\omega})^{s} \Rightarrow \Delta_{+}^{s} f(x) = \sum_{k=0}^{+\infty} (-1)^{k} {s \choose k} f(x - k)$$

Fractional B-splines

$$\beta_{+}^{0}(x) := x_{+}^{0} - (x - 1)_{+}^{0} \quad \stackrel{Fourier}{\longleftrightarrow} \quad \left(\frac{1 - e^{-j\omega}}{j\omega}\right)$$

•

$$\beta_{+}^{\alpha}(x) := \frac{\Delta_{+}^{\alpha+1} x_{+}^{\alpha}}{\Gamma(\alpha+1)} \qquad \longleftrightarrow \qquad \left(\frac{1 - e^{-j\omega}}{j\omega}\right)^{\alpha+1}$$

One-sided power functions:
$$x_{+}^{\alpha} = \begin{cases} x^{\alpha} & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

Symmetric B-splines

Symmetrization in Fourier domain:

$$\left|\hat{\beta}_{+}^{\alpha}(x)\right| = \left|\frac{1 - e^{-j\omega}}{j\omega}\right|^{\alpha+1} = \left|\frac{\sin(\omega/2)}{\omega/2}\right|^{\alpha+1}$$

Properties

Generic notation : β^{α} for either β^{α}_{+} (causal) or β^{α}_{*} (symmetric)

Equivalence with classical B-splines

$$\beta_{+}^{\alpha}(x)$$
 with $\alpha = n$ (integers)

$$\beta_*^{\alpha}(x)$$
 with $\alpha = 2n+1$ (odd integers)

Compact support!

Decay

Theorem: For
$$\alpha > -1$$
, there exists a constant C such that $\left| \beta^{\alpha}(x) \right| \le \frac{C}{\left| x \right|^{\alpha + 2}}$.

(U. & Blu, SIAM Rev, 2000)

Convolution property

$$\beta^{\alpha_1} * \beta^{\alpha_2} = \beta^{\alpha_1 + \alpha_2 + 1}$$

$$\langle \beta^{\alpha}(\cdot), \beta^{\alpha}(\cdot - x) \rangle = \beta_{*}^{2\alpha + 1}(x)$$

Riesz basis

 $\{\beta^{\alpha}(x-k)\}_{k\in\mathbb{Z}}$ is a Riesz basis for the cardinal fractional splines

Generic B-spline representation of a fractional spline

$$s(x) = \sum_{k \in \mathbb{Z}} c[k] \beta^{\alpha}(x - k)$$

$$Continuous\text{-time function (fractional spline)}$$

$$\begin{cases} c[k] _{k \in \mathbb{Z}} \end{cases}$$

$$Ciscrete representation (digital signal)$$

Stable, one-to-one representation

For $\alpha > -\frac{1}{2}$, there exist two constants $A_{\alpha} > 0$ and $B_{\alpha} < +\infty$ such that

$$\forall c \in l_2, \quad A_{\alpha} \cdot ||c||_{l_2} \le ||\sum_{k \in Z} c[k] \beta^{\alpha}(x-k)||_{L_2} \le B_{\alpha} \cdot ||c||_{l_2}$$

Explicit fractional differentiation formula

Fractional derivative operators

$$\partial^s \leftarrow \xrightarrow{Fourier} (j\omega)^s$$

$$\mathcal{O}^{s}\beta_{+}^{\alpha}(x) = \Delta_{+}^{s}\beta_{+}^{\alpha-s}(x)$$

Fractional finite difference operator:

$$\Delta^{s}_{+} \leftarrow \xrightarrow{Fourier} (1 - e^{-j\omega})^{s}$$

Sketch of proof:

$$\mathcal{J}\beta_{+}^{\alpha}(x) \longleftrightarrow (j\omega)^{s} \cdot \left(\frac{1 - e^{-j\omega}}{j\omega}\right)^{\alpha+1} = \left(1 - e^{-j\omega}\right)^{s} \cdot \left(\frac{1 - e^{-j\omega}}{j\omega}\right)^{\alpha+1-s}$$

Order of approximation

Approximation space at scale a

$$V_a = \left\{ s_a(x) = \sum_{k \in \mathbb{Z}} c(k) \varphi\left(\frac{x}{a} - k\right) : c(k) \in l_2 \right\}$$

Projection operator

$$\forall f \in L_2, \quad P_a f = \arg\min_{s_a \in V_a} \left\| f - s_a \right\|_{L_2} \quad \in V_a$$

Order of approximation

DEFINITION

A scaling function $\,\phi\,$ has order of approximation $\,\gamma\,$ iff

$$\forall f \in W_2^{\gamma}, \qquad ||f - P_a f|| \le C \cdot a^{\gamma} ||f^{(\gamma)}|| = O(a^{\gamma})$$

B-splines of degree α have order of approximation $\gamma=\alpha+1$

Spline reconstruction of a CAT-scan

Piecewise constant

$$\gamma = 1$$

 $\begin{array}{c} \text{Cubic spline} \\ \gamma = 4 \end{array}$

Reproduction of polynomials

• B-splines reproduce polynomials of degree $N = |\alpha|$

$$\sum_{k \in Z} \beta_+^{\alpha}(x - k) = 1$$

$$\vdots$$

$$\sum_{k=2}^{n} k^{n} \beta_{+}^{\alpha}(x-k) = x^{n} + a_{1} x^{n-1} + \dots + a_{n}$$

More fractals...

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Pollock

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

FRACTIONAL WAVELETS

- Basic ingredients
- Constructing fractional wavelets
- Fractional B-spline wavelets
- Multi-scale fractional differentiation
- Adjustable wavelet properties

Scaling function

DEFINITION: $\varphi(x)$ is an admissible scaling function of L_2 iff:

Riesz basis condition

$$\forall c \in l_2, \quad A \cdot ||c||^2 \le ||\sum_k c(k)\varphi(x-k)||_{L_2}^2 \le B \cdot ||c||^2$$

Two-scale relation

$$\varphi(x/2) = 2\sum_{k \in Z} h(k)\varphi(x-k)$$

Partition of unity

$$\sum_{k \in \mathbb{Z}} \varphi(x - k) = 1$$

From scaling functions to wavelets

Wavelet bases of L₂ (Mallat-Meyer, 1989)

For any given admissible scaling function of L_2 , $\varphi(x)$, there exits a wavelet

$$\psi(x/2) = 2\sum_{k \in \mathbb{Z}} g(k)\varphi(x-k)$$

such that the family of functions

$$\left\{ \frac{1}{\sqrt{2^i}} \psi \left(\frac{x - 2^i k}{2^i} \right) \right\}_{i \in Z, k \in Z}$$

forms of Riesz basis of L_2 .

Constructive approach: perfect reconstruction filterbank

Constructing fractional wavelets

Theorem: Let $\varphi(x)$ be the L_2 -stable solution (scaling function) of the two-scale relation

$$\varphi(x/2) = 2\sum_{k \in \mathbb{Z}} h(k)\varphi(x-k)$$

Then $\varphi(x)$ is of order γ (fractional) if and only if

$$H(z) = \underbrace{\left(\frac{1+z^{-1}}{2}\right)^{\gamma}}_{\text{spline part}} \cdot \underbrace{Q(z)}_{\text{distributional part}} \quad \text{with} \quad \left|Q(e^{j\omega})\right| < \infty$$

with
$$|Q(e^{j\omega})| < \infty$$

Multi-scale differentiator
$$\hat{\tilde{\psi}}(\omega) \propto (-j\omega)^{\gamma}, \ \omega \to 0 \qquad \Longleftrightarrow \qquad \begin{array}{c} \text{B-spline factorization:} \\ \varphi = \beta_{+}^{\gamma-1} * \varphi_{0} \qquad \Longleftrightarrow \qquad \left\| f - P_{a} f \right\|_{L_{2}} = O(a^{\gamma}) \end{array}$$

$$\phi = \beta_+^{\gamma-1} * \phi_0$$

$$||f - P_a f||_{I_a} = O(a^{\gamma})$$

Vanishing moments:
$$\int x^n \tilde{\psi}(x) dx = 0, \quad n = 0, \dots \lceil \gamma - 1 \rceil$$

Binomial refinement filter

Two-scale relation

$$\beta_{+}^{\alpha}(x/2) = 2\sum_{k \in \mathbb{Z}} h_{+}^{\alpha}(k)\beta_{+}^{\alpha}(x-k)$$

Generalized binomial filter

$$h_{+}^{\alpha}(k) = \frac{1}{2^{\alpha+1}} {\alpha+1 \choose k} \longleftrightarrow H^{\alpha}(z) = \left(\frac{1+z^{-1}}{2}\right)^{\alpha+1}$$

Example of linear splines: α=1

Fractional B-spline wavelets

$$\psi_{+}^{\alpha}(x/2) = \sum_{k \in \mathbb{Z}} \underbrace{\frac{(-1)^{k}}{2^{\alpha}} \sum_{n} \binom{\alpha+1}{n} \beta_{*}^{2\alpha+1}(n+k-1)}_{g(k)} \beta_{+}^{\alpha}(x-k)$$

QuickTime™ and a Video decompressor are needed to see this picture.

Remarkable property

Each of these wavelets generates a semi-orthogonal Riesz basis of L_2

FFT-based wavelet algorithm

Filterbank algorithm

$$\varphi(x/2) = \sqrt{2} \sum_{k \in \mathbb{Z}} h(k) \varphi(x-k)$$

$$\psi(x/2) = \sqrt{2} \sum_{k \in \mathbb{Z}} g(k) \varphi(x-k)$$

Click for demo

(Blu & Unser, ICASSP'2000)

Adjustable wavelet properties

- Transform is tunable in a continuous fashion!
 - Order of differentiation: $\gamma = \alpha + 1$
 - Whitening of fBMs, fractals
 - Regularity
 - Hölder continuity: α
 - Sobolev: $s_{max} = \alpha + 1/2$
 - Localization:

Wavelets and the uncertainty principle

$$\Delta_{x} = \min_{x_{0}} \frac{\left\| (x - x_{0}) \psi(x) \right\|_{L_{2}}}{\left\| \psi \right\|_{L_{2}}}$$

$$\Delta_{\omega} = \min_{\omega_0} \frac{\left\| (\omega - \omega_0) \hat{\psi}(\omega) \right\|_{L_2}}{\left\| \hat{\psi} \right\|_{L_2}}$$

Heisenberg's uncertainty relation

$$\Delta_x \cdot \Delta_\omega \ge \frac{1}{2}$$

with equality iff $\psi(x) = a \cdot e^{-b(x-x_0)^2 + j\omega_0 x}$

Question: are there such wavelet bases?

Localization of the B-spline wavelets

Theorem

The B-spline wavelets converge (in L_p -norm) to modulated Gaussians as the degree goes to infinity:

$$\lim_{\alpha \to \infty} \{ \beta_+^{\alpha}(x) \} = C \cdot e^{-(x - x_{\alpha})^2 / 2\sigma_{\alpha}^2}$$

$$\sigma_{\alpha} = \sqrt{\frac{\alpha+1}{12}}$$

$$\lim_{\alpha \to \infty} \{ \psi_+^{\alpha}(x) \} = \underbrace{C' \cdot e^{-(x - x_{\alpha}')^2 / 2\sigma_{\alpha}'^2}}_{\text{Gaussian}} \times \underbrace{\cos(\omega_0 x + \theta_{\alpha})}_{\text{sinusoid}}$$

$$\sigma_{\alpha}' = B \cdot \sigma_{\alpha}$$
 with $B \cong 2.59$

QuickTime™ and a Video decompressor are needed to see this picture.

Cubic B-spline wavelets: within 2% of the uncertainty limit!

(Unser et al., IEEE-IT, 1992)

Are there wavelets in my brain?

Fig. 2. Similarity between the receptive field of simple cortical cells and a wavelet basis function. (a) Response of a simple X cell from a monkey visual cortex and its fitted Gabor elementary signal [26], [67, Fig. 3]. (b) Semi-orthogonal cubic B-spline wavelet and its log-log frequency response [100].

WAVELETS IN MEDICAL IMAGING

- Survey of applications
- Analysis of functional imaging data (fMRI)

Wavelets in medical imaging: Survey 1991-1999

References

- Unser and Aldroubi, Proc IEEE, 1996
- Laine, Annual Rev Biomed Eng, 2000
- Special issue, IEEE Trans Med Im, 2003

Image pocessing task	Application/modality	Principal Authors
Image conpression	MR Mammogams CT Angiograms, etc	Angelis 94; DeV ore 95 Manduca 95; Wang 96; etc
Filtering	Image enhanæent • Digital radograms • MR • Mammogams • LungX-rays, CT	Laine 94,95; Lu, 94; Qian 95; Guang 97; etc
	Denaising MR Utrasound(speckle) SPECT	Weaver 91; Xu94;Coifman 95; Abdel-Malek 97;Laine 98; Novak 98, 99
Feature extraction	Detection of micro-calcifications • Mammogams	Qian 95; Yoshida 94; Strickland 96; Dhawan 96; Baoyu 96; Heine 97, Wang 98
	Texture analysis anddassification • Utrasound • CT, MRI • Mammograms	Barman 93; Laine 94; Unser 95; Wei 95; Yung95; Bush 97; Mojsilovic 97
	Snakes andactive contours • Utrasound	ChuangKuo 96
Wavelet encoding	Magnetic resonance imaging	Weaver-Healy 92; Panych 94, 96Geman 96; Shimizu 96; Jian 97
Image reonstruction	Computer tomography Limited ander data Optical tomography PET, SPECT	Olson 93,94; Peyrin 94 Walnut 93; Dtaney 95; Sahiner 96; Zhu97; Kdaczyk 94; Raheja 99
Statistical data analysis	Functional imaging • PET • fMR	Ruttimann93,94,98; Unser 95;Feiher 99, Raz 99
Multi-scale Registration	Motion correction • fMR, angiography Multi-modality imaging • CT, PET, MR	Unser 93; Thévenar 95, 98, Kybic 99
3D visualization	• CT, MRI	Gross 95, 97 Muraki 95; Kamath 98,Horbelt 99

 $\mathsf{QuickTime^{TM}}$ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Functional brain imaging by fMRI

BOLD (Blood Oxygenation Level Dependence)

Basic principle: deoxygenated blood is more paramagnetic than oxygenated blood

Time series

EPI acquisition

Matrix size: 128 x 128 x 30 Pixels x 68 measurements

Resolution: 1.56 x 1.56 x 4 mm x 6 seconds

Functional brain imaging by fMRI (Cont'd)

QuickTime™ and a decompressor are needed to see this picture.

Main problems:

- Small signal changes (1-5%)
- Very noisy data averaging

Standard solution

Spatial Gaussian smoothing (SPM)

On the fractal nature of fMRI data

Brain: courtesy Jan Kybic

Log-Log plot of spectral density

Fractal dimension: D = 1 + d - H = 2.534 with d = 2 (topological dimension)

Wavelet analysis of fMRI

- Advantages of the wavelet transform
- (Ruttiman et al., IEEE-TMI, 1998)
- Orthogonal transformation : white noise → white noise
- Decorrelates/whitens fMRI signal
- Data compression
- Increased signal-to-noise ratio (averaging effect)
- Preserves space localization

An example: auditory stimulation

Conclusion

Fractional splines

- Natural extension of Schoenberg's polynomial splines
- Stable, convenient B-spline representation
- Most polynomial B-spline properties are retained
- Intimate link with fractional calculus
 - Elementary building blocks: Green functions of fractional derivative operators
- Efficient digital-filter-based solutions

New fractional wavelets

- Multiresolution bases of L₂
- Fast algorithm
- Tunable
 - Regularity
 - Localization
 - Order of differentiation
- Optimal for the processing of fractal-like processes (pre-whitening)
- Application in signal and image processing
 - Processing of fractal-like signals
 - Wavelet-based processing and feature extraction

Acknowledgments

Many thanks to

- Dr. Thierry Blu
- Annette Unser, Artist
- + many other researchers, and graduate students

Software and demos at:

http://bigwww.epfl.ch

Extensions (on-going work)

Richer family: alpha-tau splines

$$\partial_{\tau}^{\gamma} \leftarrow \xrightarrow{Fourier} (j\omega)^{\frac{\gamma}{2}+\tau} (-j\omega)^{\frac{\gamma}{2}-\tau}$$

[Blu et al., ICASSP'03]

- Multi-dimensional: fractional polyharmonic splines
 - Polyharmonic smoothing splines

[Tirosh et al., ICASSP'04]

Polyharmonic wavelets

[Van de Ville et al., under review]

$$\Delta^{\gamma/2} \quad \stackrel{Fourier}{\longleftrightarrow} \quad \|\mathbf{\omega}\|^{\gamma}$$